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Publishable Summary 
 

The power grid is considered to be the largest industrial system in mankind. As such, since 
the arrival of computer simulators, power systems have been extensively analyzed to 
ensure their robustness, efficiency and security of supply. In this context, dynamic analysis 
are fundamental to understand power system stability and transient behavior during 
disturbances. Real-world components, such as generators, loads, power lines, 
transformers, converters based on power electronics, among others, exhibit non-linear 
behaviors that must be accurately modeled to ensure simulation fidelity. While 
incorporating these non-linearities increases complexity, they are essential for capturing 
realistic dynamic behavior. 

This document provides a complete set of the most common types of nonlinearities found 
in dynamic models, including saturation limits, squared and trigonometric terms, hysteresis, 
empirical relationships, discrete switching behaviors, and more. These non-linear elements 
regularly appear throughout the system. Hence, the goal of this deliverable is to provide a 
comprehensive overview of the non-linear building blocks that compose power system 
components, so that they can be later modelled in a multilinear format. 
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1 Introduction

Power systemdynamic analysis is crucial for assessing system stability and de-
signing control strategies under disturbances. Accurate dynamic modeling of
components like generators, loads, transmission lines, and control systems is
critical to ensure simulations are closely matching with reality. However, real-
world power system components exhibit numerous non-linear behaviors. In-
corporating these non-linearities into models increases their fidelity but also
significantly complicates analysis, often precluding closed-form analytical so-
lutions and necessitating numerical simulation.

This document details common non-linearities encountered in power system
dynamic models, identifying the components where they typically arise and
providing the relevant mathematical formulations. Understanding these non-
linearities is essential for interpreting simulation results and appreciating the
complexities of power system behavior. In this spirit, the next deliverables will
depart from these non-linearities and build equivalent multilinear models.
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2 Differential and Integral Equations

2.1 Mathematical Description

Differential equations are defined such as dx
dt (first derivative), whereas integral

equations take the form of
∫ t

0 x(τ)dτ . Other derivative and integral terms can
be composed based on these two basic operators.

Often, control systems and power system dynamics are represented through
transfer functions. These transfer functions indicate the relationship between
an output and an input. They are conventionally defined asG(s) = Y (s)

U(s) , where
s is the complex Laplace variable, Y (s) represents the output, and U(s) sym-
bolizes the input. Transfer functions with the Laplacian domain are particularly
useful as they capture Linear Time-Invariant (LTI) dynamics in the frequency
domain. In the time domain, they would correspond to a set of ordinary differ-
ential equations.

It is worth noting that transfer functions, and derivatives or integrals for that
matter, are essentially linear operators. However, differential and algebraic
equations can involve non-linear terms (e.g. a squared term, a sine, a cosine,
etc.), hence the equations themselves are non-linear.

2.2 Occurrence in Power Systems

• Controllers: Controllers are used to regulate the output of a system and
are typically represented as transfer functions. While they can take vari-
ous forms, proportional-integral controllers are particularly common, and
usually modelled in the s domain such as:

G(s) = Kp + Ki

s
(2.1)

where Kp is the proportional gain and Ki is the integral gain. Derivative
terms are rarely used in power systems controls and thus excluded from
the model.
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2 Differential and Integral Equations

• Synchronous Generator Swing Equation (Second Order): Describes the
dynamics of the rotor angle (δ) and speed (ω), related to the power bal-
ance between the generator and the grid. The second order complete
expression can be split into two first order equations:

dδ

dt
= ωb(ω − ωs) (2.2)

dω

dt
= 1

2H
(Pm − Pe −D(ω − ωs)) (2.3)

where H is the inertia constant, ωb is base angular frequency, ω is rotor
angular frequency (p.u.), ωs is synchronous angular frequency (typically 1
p.u.), Pm is mechanical power, Pe is electrical power (often further involv-
ing sin(δ) due to the grid’s inductive nature), and D is the damping coef-
ficient. The reader is invited to refer to [1] for a more detailed description
of the swing equation.

• Generator Flux Dynamics (First Order): It is first commonpractice to refer
the generator equations to its rotor reference frame (dq frame). Then, the
relationship between the flux linkage ψd and ψq , current id and iq , and
voltage vd and vq is given by [2]:

dψd

dt
= vd −Rsid + ωψq (2.4)

dψq

dt
= vq −Rsiq − ωψd (2.5)

where the right-hand sides of the equations contain multilinear terms.

• Control Filters: Filters are used to remove undesired frequency compo-
nents from a signal. For instance, low-pass filters remove high-frequency
components from a signal, high-pass filters remove low-frequency com-
ponents, andband-pass filters removeboth high and low-frequency com-
ponents. They are typically represented as transfer functions in the s do-
main. A low-pass filter transfer function, it its generic format, becomes:

G(s) = 1
τs+ 1

(2.6)

where τ is the time constant, and its equivalent time domain expression
is:

d

dt
y(t) + 1

τ
y(t) = 1

τ
u(t) (2.7)

• Lead-Lag Compensators: Power systems components can also inte-
grate lead-lag compensators, which, as the name would indicate, are
a combination of a low-pass and a high-pass filter. The transfer function
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2 Differential and Integral Equations

of a lead-lag compensator is given by:

G(s) = K
τ1s+ 1
τ2s+ 1

(2.8)

whereK is a gain, τ1 is the lead time constant, and τ2 is the lag time con-
stant. Power System Stabilizers (PSS) are usually implemented through
lead-lag compensators as the basic building blocks [3]. Equivalently, the
time domain expression of a lead-lag compensator is:

τ2
d

dt
y(t) + y(t) = Kτ1

d

dt
u(t) +Ku(t) (2.9)

2.3 Implications

Transfer functions are the standard way to represent linear dynamic compo-
nents, especially controllers. They should be seen as the fundamental oper-
ators that one can expect to find in a power system model. It is also worth
noting that despite the integral term, power system simulators tend to use a
set of differential and algebraic equations to represent the dynamics of the
system [4]. If the derivative and integral operators do not always return linear
functions (in the sense of f(x) ̸= ax+b, being f an output of the operators), it is
because the operators are applied to non-linear functions to begin with. In the
following work we explore the non-linearities that can arise in both differential
and algebraic equations inside power systems.
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3 Saturation Limits

3.1 Mathematical Description

Physical components have limits that have to be respected. Saturation blocks
represent imposed limits on variables. Saturations can be due to physical limits
inherent to the device (e.g. a transformer magnetic core saturation) or due
to control actions (e.g. a power electronic converter current limitation). Often
they serve the purpose of protecting the device fromdamage. Mathematically,
saturations can be modeled as a piecewise-linear function:

y = sat(x) =


ymax if xmax ≤ x

k · x if xmin < x < xmax

ymin if x ≤ xmin

(3.1)

where typically k = 1 if x is the direct input to the limiter, xmin and xmax are
the minimum and maximum input thresholds, and ymin and ymax are the mini-
mum and maximum output limits. A more compact form, assuming k = 1 and
thresholds aligned with output limits, uses min/max functions:

y = min(ymax,max(ymin, x)) (3.2)

The saturation expression is especially tricky to handle given that in the inter-
mediate region, being x between xmin and xmax, the output y is a linear function
of x. However, the function is not linear in the whole domain, nor continuously
differentiable.

3.2 Occurrence in Power Systems

Saturation limits appear across various control components in power systems,
often to represent the physical limitations of actuators or ensure system pro-
tection, as previously discussed.

• Synchronous Generator Excitation Systems: One of the most common
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3 Saturation Limits

applications. The exciter output voltage (Efd or VR) is limited by the ca-
pabilities of the excitation hardware.

– Equation Example (IEEE AC1A): The voltage VR feeding the main
exciter field is limited, in a compact manner [5]:

VR = min(VR,max,max(VR,min,KA(Vref − Vcomp − Vstab − KF · Efd

sTF
)))
(3.3)

where VR,max and VR,min represent the regulator limits, KA is the
gain, Vref is the reference voltage, Vcomp is the compensation volt-
age, Vstab is the stabilizer voltage, KF is the feedback gain, and TF

is the feedback time constant

Additionally, the field voltage Efd may be subject to ceiling limits
influenced by exciter saturation:

Efd = min(VE · SE(VE)max,max(VE · SE(VE)min, VE)) (3.4)

where SE(VE) is the exciter saturation function.

• Power System Stabilizers (PSS): They are used to prevent synchronous
machines fromgoing unstable due to electromechanical oscillations, pro-
voked for instance by switching events. The PSS sends a signal related
to the generator’s motion, which is then added to the reference voltage
of the Automatic Voltage Regulator (AVR).

– Equation Example (IEEE PSS2B): The input signal is passed through
to transfer functions G1(s) and G2(s), built with filters and lead-lag
compensators and then multiplied by a gain KPSS [6]:

Vs(s) = KPSS(G1(s) · PSS1Input +G2(s) · PSS2Input) (3.5)

The output is then limited by the PSS limits:

Vs = min(VSTMAX,max(VSTMIN, Vs(s))) (3.6)

where VSTMAX and VSTMIN are the maximum and minimum output
limits.

• Governor Control Systems: Governor systems are in charge of control-
ling the power output of generators. Mechanical actuators, like valve or
gate positions, have imposed limits that must be respected given the
physical constraints of the device.
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3 Saturation Limits

– Equation Example (Hydro Turbine Governor): In simple terms, a hy-
dro turbine or any other mechanical actuator has a limited range
of motion. This is translated into a limit on the power output of the
generator:

P = min(PMAX,max(PMIN,Control Signal)) (3.7)

where PMAX and PMIN are themaximum andminimumpower output
limits.

• Power Converters: Saturation limits are ubiquitous in control of power
electronic converters (e.g., VSCs, MMCs). These devices have to face the
limits of the physical components, like semiconductors, that compose
them. In their control structures, limiters are applied to:

– Current Limits: The output of the current controller is limited to avoid
overcurrent in the semiconductors (IGBTs usually), and thus, not dam-
age the converter. It is also typical to establish a rule to prioritize
reactive over active current, or vice versa.

– Modulation Index: To ensure PWM duty cycles remain between 0
and 1. The duty cycle is related to the ratio between the DC and AC
voltages.

– Voltage Limits: The converter’s output voltage is limited to avoid is-
sues in relation to overvoltage (which could in turn condition the in-
sulation and filter sizing).

– Example: The saturations found in power converters are not essen-
tially different, in mathematical terms, as the ones found in the pre-
vious examples. However, for a simple current saturation strategy,
the expression is as follows:

i2q,s = min(i2max, i
2
q) (3.8)

It is worth noting that the current can take both positive and negative
values, so some attention has to be paid to the sign of the original.
Additionally, the d component of the current could be calculated as
id =

√
i2max − i2q,s.

Moreover, a note can be made about anti windup strategies. When sat-
uration is not properly applied in systems with integral control actions,
it can lead to a phenomenon known as wind-up, where the integrator
continues to accumulate error even though the actuator is no longer re-
sponding. This causes delayed recovery and potential instability when
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3 Saturation Limits

the system returns to the linear operating range. Converter controllers
are no exception to this rule, and thus, anti-windup strategies are often
applied. Constructively, they imply the use of a saturation block that is
able to detect when the saturation is active, and then stop the integration
(with more or less sophistication).

3.3 Implications

In short, saturation introduces nonlinearity into otherwise linear control loops,
which can lead to piecewise system behavior and even discontinuities in the
state trajectories. This complicates both analysis and design, as linear control
theory may no longer be directly applicable near the limits.

Saturation also affects system stability margins. Operating near or within the
saturation region can reducedamping or gainmargin,making the systemmore
sensitive to disturbances. Careful tuning and anti-windup strategies are often
required to mitigate these effects.

From a simulation perspective, saturation functions can introduce stiffness and
convergence challenges, particularly in stiff or real-time simulations. Discon-
tinuous or sharp saturation logic may require careful numerical handling to
ensure reliable simulation results. Otherwise, wemay face divergent solutions
or accumulate significant errors.
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4 Squared Terms

4.1 Mathematical Description

Non-linearities in power systems frequently arise from relationshipswhere one
variable depends quadratically on another. A general expression for this kind
of non-linearity is:

y = k · x2 (4.1)

where k is a constant that characterizes the system or component behavior.
These relationships introduce non-linear terms into system equations, which
must be handled with iterative solution techniques such as Newton-Raphson.
Note that the term x2 can be replaced by any other power, such as x3, x4, yet
the same principles apply. Also, products of the form x · y are not an issue a
priori, as they already follow a multilinear format.

4.2 Occurrence in Power Systems

Several components andphenomena in power systems involve squared terms
due to their physical or operational characteristics:

• Constant Impedance Loads: Loads are conventionally modelled with a
ZIP model, that is, a combination of constant impedance, current, and
power loads [7]. Thus, a component of these static load models is the
constant impedance model, where both active and reactive power con-
sumption are proportional to the square of the voltage magnitude. This
occurs because the power drawn by a purely resistive or inductive load
follows Ohm’s Law, yielding:

PL = P0

(
V

V0

)2
= V 2

R
= G · V 2 (4.2)

QL = Q0

(
V

V0

)2
= V 2

X
= B · V 2 (4.3)

Page 15 of 37 TenSyGrid D3.1



4 Squared Terms

where P0, Q0 are the nominal active and reactive powers at the nominal
voltage V0, V is the actual bus voltage magnitude, R,X are the equiva-
lent resistance and reactance of the load, andG = 1/R andB = 1/X are
the equivalent conductance and susceptance, respectively. In its most
general form, the load model could adopt other exponents; it has been
here particularized for order 2.

• Transmission Line Losses: Power losses in transmission lines arise from
resistive and reactive elements, which are proportional to the square of
the current magnitude. These losses are expressed as:

Ploss = I2R (4.4)
Qloss = I2X (4.5)

where I is the current magnitude, R is the resistance, and X is the re-
actance of the line. It is worth noting that the loss terms are typically
computed at the end, once the power flow solution has been obtained.

• Power Balance: The power flow equations are a good example of a
system of non-linear equations, involving, among others, squared terms.
The complex power balance at a bus, relating it to the admittance matrix
Y and the bus voltage vector V , is given by:

Sbus = V (Y · V )∗ (4.6)

where Sbus is the complex power vector at the bus, which would then be
split into real and reactive powers. The avid reader will have noticed that
if the admittance matrix has a non-zero diagonal, products of squared
voltages are present. Moreover, the power flow equations also exhibit
considerable multinearity, that is, there are multilinear terms for every
pair of voltages such as V i · V ∗

j , being i ̸= j .

• Induction Motor Torque Characteristics: In dynamic modelling of induc-
tionmotors, the electromagnetic torque T typically depends non-linearly
on the slip sl (relative speed difference between the rotor and the syn-
chronous speed). A typical expression is:

T = 3
ωs

·
E2 · R

sl

( R
sl

)2 +X2 , (4.7)

where E is the terminal voltage, R is the equivalent resistance, X is the
equivalent reactance, and ωs is the synchronous speed. The quadratic
term reflects non-linear behavior in torque development, especially rel-
evant in stability and motor-starting studies. Note that the slip sl is de-
fined as sl = (ωs − ωr)/ωs, where ωr is the rotor speed. Also, the term
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4 Squared Terms

E2 is present, which is a squared voltage, and there are divisions of vari-
ables (non-linear by definition). However, their multilinearity equivalence
is relatively straighforward.

4.3 Implications

As it has been shown, square terms are often present in power system mod-
els, and they can have significant implications on the system’s behavior, both
in the steady-state and dynamic domains. For instance, the power flow equa-
tions are a good example of a system of non-linear equations, involving, apart
from other non-linearities, squared terms. Likewise, induction motors also ex-
hibit non-linear behavior with squared operations. Although it has not been
particularly detailed here, control systems such as the ones in power elec-
tronic converters can also involve the presence of squared terms, without loss
of generality. In short, products of squared terms are one of themost common
sources of non-linearities in power systems.
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5 Spatiotemporal Partial Differential Equations

5.1 Mathematical Description

Equations involving derivatives with respect to both time (t) and one or more
spatial dimensions (e.g., distance x along a line): ∂u

∂t = F (u, ∂u
∂x ,

∂2u
∂x2 , . . . ). These

expressions can come from the Telegrapher’s equations in the power systems
realm, and are especially tricky to handle, as they are not linear and require
special numerical techniques to solve.

5.2 Occurrence in Power Systems

• Electromagnetic Transients (EMT) on Transmission Lines: The Telegra-
pher’s equations accuratelymodel voltage v(x, t) and current i(x, t)wave
propagation. They are a set of two coupled partial differential equations
(PDE).

– Equations: For a line with distributed resistance R′, inductance L′,
conductance G′, and capacitance C ′ per unit length [8]:

∂v(x, t)
∂x

= −R′i(x, t) − L′∂i(x, t)
∂t

(5.1)

∂i(x, t)
∂x

= −G′v(x, t) − C ′∂v(x, t)
∂t

(5.2)

These are linear PDEs, but non-linearities can arise from electro-
magnetic effects (voltage-dependentG′ orC ′) or line arrestersmod-
elled with non-linear V-I characteristics. Note that, to the best of the
author’s knowledge, this is the only occurrence in power systems
where the derivatives with respect of the position appear. Addition-
ally, there is no general method to solve these equations analyti-
cally, hence they are solved using numerical techniques (see Dom-
mel’s algorithm [9]).

• Distributed Parameter Models of Large Generators: Highly specialized
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5 Spatiotemporal Partial Differential Equations

models might could consider spatial variations within the windings, akin
to a transmission line. However, given the relativelyminor length of these
windings, compared to a transmission line, the spatial variations are rarely
considered.

5.3 Bergeron Line Model

TheBergeronmodel is a simplified transmission line EMTmodel used in power
system transient analysis, particularly for simulating voltage and current tran-
sients caused by sudden events, which deserves special attention. Some vari-
ables in the equations are composed with a lag function with time lag τ . This
lag time is the wave travel time (or propagation delay) along the transmission
line. These equations are a direct application of the EMT Transmission lines
[10]:

Vs(t) − ZcIs(t) = Vr(t− τ) − ZcIr(t− τ) (5.3)
Vr(t) − ZcIr(t) = Vs(t− τ) − ZcIs(t− τ) (5.4)

where Vs(t) and Is(t) are the voltage and current at the sending end at time
t, Vr(t) and Ir(t) are the voltage and current at the receiving end at time t, Zc

is the characteristic impedance of the transmission line. For a lossless line, it
is given by Zc =

√
L′/C ′, where L′ and C ′ are the per-unit-length inductance

and capacitance, respectively, and τ is the travel time of a wave along the line.
For a lossless line, it is given by τ = d

√
L′C ′, where d is the length of the line.

The Bergeron model could be seen as a special case of the Telegrapher’s
equations, where the spatial derivatives are not present thanks to thediscretiza-
tion of the line in multiple sections, and where a lag is introduced to account
for the wave travel time. Figure 5.1 shows the equivalent circuit section of the
Bergeron model.

Z

+

−

vk(t) ik(t− τ)

ik,m(t)

Z

+

−

vm(t)im(t− τ)

im,k(t)

Figure 5.1: Bergeron Model Time Domain Interface.
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5 Spatiotemporal Partial Differential Equations

5.4 Implications

Spatiotemporal derivatives are a different set of derivatives than the ones tradi-
tionally found in power systems machinery and control systems. Despite this,
they are extensively known in the literature, and much needed to accurately
represent the behavior of power lines. By discretizing the line in multiple sec-
tions, the Bergeron model is able to represent the behavior of the line with a
good accuracy, while still being a relatively simple model. It is to be seen if
TenSyGrid aims to discretize the equations and operate on them, or rather, de-
part from the Telegrapher’s equations in their most pure form, and try to assess
the stability from them.
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6 Trigonometric Terms

6.1 Mathematical Description

Often, power systems models deal with trigonometric functions to represent
rotations or the real and imaginary projections of phasors. Functions like sin(x)
and cos(x) are recurrently found. Additionally, signals such as v = sin(ωt) and
harmonics of that signal can also appear. Harmonics would have the mathe-
matical expression sin(nωt) with n ∈ N.

6.2 Occurrence in Power Systems

• Power Transfer Equations: They establish the fundamental relationship
between power and voltage magnitudes and angles. The power flow
problem consists of solving them. They can be expressed in rectangular
form or polar form, being the latter the most common [11]:

Pi =
N∑

j=1
|Vi||Vj |(Gij cos(θi − θj) +Bij sin(θi − θj)) (6.1)

Qi =
N∑

j=1
|Vi||Vj |(Gij sin(θi − θj) −Bij cos(θi − θj)) (6.2)

where Vk = |Vk|∠θk is the voltage phasor at bus k, and Yij = Gij + jBij is
the ij-th element of the network admittance matrix.

• Synchronous Generator Electrical Torque/Power: The air-gap torque
(Te) or power (Pe) depends sinusoidally on the rotor angle (δ) relative to the
terminal voltage or infinite bus angle. These trigonometric function ap-
pearwhenexpressing thegenerator’s internal variables in thedq-reference
frames. Such a change of reference is necessary to model part of the
synchronous generators behavior.

– Classical Model: Connected to an infinite bus V ∠0, assuming a per-
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6 Trigonometric Terms

fectly inductive behavior:

Pe = E′V

X
sin(δ) (6.3)

Where E′ is internal voltage magnitude, V is infinite bus voltage
magnitude, X is the machine’s equivalent reactance, and δ is rotor
angle relative to the infinite bus. This simplified expression is often
used to analyze the transient stability of the system [12].

– Salient Pole - Simplified: Including reluctance torque, relative to ter-
minal voltage Vt∠θt, as similarly found in [13]:

Pe =
E′

qVt

X ′
d

sin(δ − θt) + V 2
t

X ′
d −X ′

q

2X ′
dX

′
q

sin(2(δ − θt)) (6.4)

whereE′
q is q-axis internal voltage, Vt is terminal voltagemagnitude,

X ′
d, X

′
q are d- and q-axis transient reactances.

• Park Transformation: Found within converter controls, it is used exten-
sively both in grid-following and grid-forming converters to move from
the abc-reference frame to the dq-reference frame. The core error sig-
nal often involves trigonometric functions of the angle difference. In its
most complete format, including the Clarke transformation in it, the trans-
formation is given by [14]:

xd

xq

x0

 = 2
3


cos(θ) cos(θ − 2π

3 ) cos(θ + 2π
3 )

− sin(θ) − sin(θ − 2π
3 ) − sin(θ + 2π

3 )
1
2

1
2

1
2



xa

xb

xc

 (6.5)

where θ is the angle between the d-axis and the phase-a axis (tracked
with a phase-locked loop in grid-following converters), and xa, xb, xc are
the components of the vector x in the abc-reference frame. Note that
factors and different dq versus qd ordering are present in the literature,
although the core idea is the same.

6.3 Implications

Trigonometric functions are also one of the most common sources of non-
linearity in power systems, found in many models, including conventional ma-
chines, power lines and converters. The complexity is in how to multilinearize
expressions such as sin(x) and also sin(x+ a) where a is a constant.
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7 Empirical Non-Linear Relationships

7.1 Mathematical Description

These relationships are derived from experimental observations rather than
fundamental physical laws, although they can be approximated by fitted ana-
lytical functions. They are typically represented using:

• Look-Up Tables (LUTs): Discrete mappings from input to output values,
often combined with interpolation methods. Expressed as y = LUT(x).

• Piecewise Functions: Multiple analytical expressions defined over dis-
tinct intervals of the input variable. Their form could resemble that of
(3.1), with potentially more conditionals.

• Fitted Analytical Functions: Parametric models (e.g., polynomials, expo-
nentials) calibrated to match empirical data.

7.2 Occurrence in Power Systems

• Magnetic Saturation: As found in generators and transformers, the non-
linear relationship between current (I ) and the magnetic flux (or internal
voltageE) arises frommagnetic core saturation. This behavior is typically
characterized using empirical data from the Open Circuit Characteristic
(OCC) curve of the machine.

– Example: A saturation factor SE modifies the air-gap voltage con-
tribution, capturing the increased excitation current required due to
saturation. SE is a non-linear function of the internal voltage E or
terminal voltage Vt, and is often represented as:

SE(E) = Asat exp(Bsat · E) (Exponential fit model) (7.1)

where the exponential is a growing exponential, that is, Bsat > 0. Al-
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7 Empirical Non-Linear Relationships

ternatively, it may be defined through a look-up table derived from
OCC data. In excitation systemmodels, the saturation effect is com-
monly modeled as an additive correction to the linear air-gap volt-
age. More complexmodels include the usageof exponential Fourier
approximations [15], yet this is left out of the scopeof thismanuscripts.

• Load Modeling: The voltage and frequency dependence of aggregated
loadsmay not conform to simple analytic expressions and are frequently
captured through empirical models, such as the ZIP model. The load
ZIP model has been presented before, but not with the dependency on
frequency.

– Example: The combined ZIP load model expresses active and re-
active power as:

PL = P0

(
az

(
V

V0

)2
+ ai

(
V

V0

)
+ ap

)
(1 + kpf ∆f) (7.2)

QL = Q0

(
bz

(
V

V0

)2
+ bi

(
V

V0

)
+ bp

)
(1 + kqf ∆f) (7.3)

where az + ai + ap = 1, bz + bi + bp = 1, and ∆f represents the
frequency deviation. The coefficients ak, bk, kpf , and kqf are typically
obtained through empirical fitting. The positive side of using this
model is that it contains linear operations apart from the squared
voltage term, which has been previously discussed.

• PV Panel Characteristics: The current-voltage (I-V) behaviour of photo-
voltaic panels under specific irradiance and temperature conditions is in-
herently non-linear and usually modeled using empirical data or semi-
empirical diode-based equations [16]. More on that in the following sec-
tion.

7.3 Implications

Empirical models are essential when physics-based formulations are either
unavailable or too complex to be practical. They allow accurate representa-
tion of real-world behaviour but rely heavily on the quality and resolution of
the underlying data. In particular, care must be taken when using piecewise
functions to avoid introducing discontinuities, and the choice of interpolation
or fitting technique can significantly impact model fidelity. Nonetheless, the
usage of empirical models do not introduce novel non-linearities, but rather a
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7 Empirical Non-Linear Relationships

different way of representing known non-linearities.
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8 Exponentials

8.1 Mathematical Description

Exponential functions describe relationshipswhere the rate of change of a vari-
able is proportional to its current value. They are generally expressed as:

y = a · exp(b · x) or y = a · (exp(bx) − 1)

where a and b are fitting parameters that control the scaling and growth rate of
the function. These forms are particularly useful for capturing behaviours that
involve sharp nonlinear growth or decay. From our experience, convergence
of numerical solvers can be hard to achieve when using exponential functions,
as they can introduce stiffness to the system.

8.2 Occurrence in Power Systems

Exponential functions appear frequently in power systemmodeling, especially
in contexts where physical phenomena exhibit strong non-linearities over cer-
tain operating ranges. Notable applications include:

• Generator Saturation Models: As previously discussed in (7.1), the mag-
netic saturation characteristic of synchronous machines and transform-
ersis commonly approximated using exponential functions. This formu-
lation captures the rapid increase in excitation current required as the
machine approaches core saturation.

• Power Electronics (Diode/Thyristor Models): Semiconductor devices
exhibit exponential voltage-current relationships, as indicatedby theShock-
ley diode equation. This is especially relevant in detailed electromag-
netic transient (EMT) models of converters, rectifiers, and switching de-
vices. Notoriously, the Shockley diode equation is written as [17]:

ID = IS

(
exp

(
VD

nVT

)
− 1

)
(8.1)
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8 Exponentials

where ID is the diode current, VD is the diode voltage, IS is the reverse
saturation current, n is the ideality factor (typically between 1 and 2), and
VT is the thermal voltage. This equation captures the sharply non-linear
conduction behaviour of junction-based semiconductor devices.

It is not uncommon to model diodes and similar semiconductors in a
piecewise format to avoid confronting the heavily varying derivative of
the exponential function, especially in SPICE-like software. Also, the ex-
ponential function is used in the modeling of photovoltaic panels.

8.3 Implications

Exponential functions are critical for accurately representingphysical processes
characterizedby sharp non-linearities, such asmagnetic saturation inmachines
and current-voltage characteristics in semiconductors. Their inclusion enhances
the realism of simulation models, especially in transient and dynamic studies.
However, care must be taken when incorporating exponential terms in numer-
ical simulations, as their steep gradients can introduce stiffness and conver-
gence challenges in time-domain solvers. It will have to be discussed if this
level of detail is required in TenSyGrid.
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9 Hysteresis

9.1 Mathematical Description

Hysteresis refers to a system behaviour where the output y(t) depends not
only on the current input x(t), but also on the history of the input—particularly
the direction of change. This can be expressed as:

y(t) = F (x(t),history(x))

As a result, the systemmay produce different output values for the same input,
depending onwhether the input is increasing or decreasing. This characteristic
leads to the formation of a closed loop in the x-y plane, known as a hysteresis
loop.

9.2 Occurrence in Power Systems

• Transformer Core Magnetization (B–H Curve): The most prominent ex-
ample of hysteresis in power systems is found in the magnetization of
transformer cores. The relationship between magnetic flux density (B)
and magnetic field intensity (H ) displays hysteresis due to the behaviour
of magnetic domains in ferromagnetic materials. Accurate representa-
tion of this phenomenon is essential for modelling:

– Inrush Currents: High transient currents that occur when energizing
a transformer. Critical to model for the design of protective relays
and tuning of circuit breakers.

– Ferroresonance: A complex and potentially damaging resonant con-
dition involving nonlinear inductance and system capacitance.

– Harmonics: Nonlinear magnetization can introduce harmonic distor-
tion into the current waveform, amplifying/dampening some har-
monics based on their frequency.
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9 Hysteresis

– Equations: Detailed hysteresis models—such as the Preisach and
Jiles Atherton models—use state-dependent differential or integral
equations to describe magnetic behavior [18]. Simpler implementa-
tions may rely on look-up tables or empirical approximations of the
hysteresis loop. In many stability or phasor-domain studies, hystere-
sis is often neglected, and a single-valued saturation curve is used
instead. For EMT simulations, introducing conditionals as in the sat-
uration block is a common approach.

• Relays (e.g., Thermostats, Certain Protection Relays): Many relays incor-
porate hysteresis in their logic, switching ON at one threshold and OFF at
a different one. This prevents frequent toggling due to small fluctuations
around a threshold and improves robustness in control logic.

Figure 9.1 shows an example of a hysteresis model block to illustrate the de-
pendency on the history of the input.

Input x(t)
Hysteresis

Output y(t)

Memory / Path

Figure 9.1: Example of a hysteresis model block.

9.3 Implications

Hysteresis introduces memory and path dependency into system behaviour,
making the current state dependent on past inputs. While this promotes mod-
elling realism, it also increases the complexity of simulation, especially in time-
domain studies. Initializing the models at the correct initial conditions is cru-
cial for accurate results. As a result, detailed hysteresis models are typically
used only in electromagnetic transient (EMT) simulations or specific applica-
tions such as ferroresonance analysis.
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10 Absolute Value

10.1 Mathematical Description

The absolute value function returns the non-negativemagnitude of a real num-
ber, regardless of its sign. It is defined as:

y = |x| =
{
x if x ≥ 0
−x if x < 0

(10.1)

This piecewise-linear function is continuous but not differentiable at x = 0,
which introduces modelling and numerical implications in systems that rely
on smooth behaviour.

10.2 Occurrence in Power Systems

The absolute value function arises in various power system applications, par-
ticularly where the system must respond to the magnitude of a variable re-
gardless of its direction:

• Control System Deadbands: Many control systems are designed with
deadband logic, meaning the controller remains inactive when the in-
put error remains within a certain tolerance. The control action is only
triggered when the absolute value of the error exceeds the deadband
threshold.

– Example: Given an input error e, the controller output u can be ex-
pressed as:

u =
{

0 if |e| ≤ Deadband
K · (e− sign(e) · Deadband) if |e| > Deadband

(10.2)

This ensures that small oscillations or noise around the setpoint do
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10 Absolute Value

not cause unnecessary control actions, as explained in the hystere-
sis section.

• Protection Functions: Protective relays often operate based on signal
magnitudes. Overcurrent protection, for instance, triggers when the ab-
solute value of the measured current exceeds a preset limit. Similarly,
distance protection functions rely on the magnitude of voltage and cur-
rent phasors (e.g., |v|, |i|) to calculate apparent impedance and determine
fault conditions [19].

One approach towards implementing the absolute value of a complex signal
is to square the components and take the square root, such as for instance
S =

√
P 2 +Q2. This is equivalent to S = |P + jQ|. Opting for the squares and

the root involves non-linear operations as well, by introducing i) the squares,
and ii) the square root. It is to be seen which approach is more numerically
stable.

10.3 Implications

The absolute value function introduces a non-smooth point at x = 0, where
its derivative changes discontinuously from −1 to +1. This sharp transition can
lead to challenges in numerical solvers, particularly in time-domain simula-
tions involving control loops. In optimization and controller tuning, the non-
differentiability at zero may affect convergence properties or necessitate the
use of smooth approximations such as y ≈

√
x2 + ϵ to ensure numerical sta-

bility. Despite its simplicity, the absolute value function is a fundamental and
common non-linear block to deal with.
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11 Discrete Switching

11.1 Mathematical Description

Discrete functions describe behaviours that exhibit abrupt transitions between
distinct states, typically binary. A discrete event can be represented as a time-
dependent binary function that activates at a specific time t0, such as:

f(t) =
{

1 if t ≥ t0

0 if t < t0
(11.1)

Logical switches are an extension of this concept, where the systemmaintains
an internal state that evolves based on a logical rule. These can be formalised
using a discrete state variable b(t) ∈ {0, 1} that updates at each time step ac-
cording to a user-defined transition function f :

b(t) ∈ {0, 1} (11.2)
b(t+ 1) = f(b(t), x(t)) (11.3)

where x(t) is an input signal at time t. Such constructs arewidely used in digital
control, mode-dependent systems, and hybrid models that mix continuous
dynamics with discrete logic.

11.2 Occurrence in Power Systems

Various non-continuous functions are employed in control and protection logic.
Thesebinary-valued functions introduce abrupt transitions in systembehaviour
based on thresholds:

• Heaviside Function: Symbolize a step change in the input and were first
introduced by Oliver Heaviside [20]:

h(x) =
{

1 if x > 0
0 if x ≤ 0

(11.4)

Page 32 of 37 TenSyGrid D3.1



11 Discrete Switching

This function is used to model switching behaviour that occurs at zero-
crossings of the input. Heaviside functions are employed in control sys-
tems to for instance impose a reference step-change, e.g., an immediate
and change in the reference active power setpoint.

• Step Function at Threshold: Similary, the Heaviside function can be gen-
eralised to arbitrary thresholds x0, which can represent an electrical mag-
nitude, or time:

h(x) =
{

1 if x ≥ x0

0 if x < x0
(11.5)

This generalizes the Heaviside function to arbitrary thresholds.

• Bang Bang Controllers: A bang-bang controller is a control mechanism
that switches instantaneously between two extreme output values with
no intermediate states. This form of control is particularly common in sys-
tems where a binary actuation is sufficient. Thermostats, limit controllers,
and converter gating logic are good examples.

Unlike smooth controllers, bang-bang logic often incorporates an inter-
nal discrete state that governs the switching logic. This results in a hybrid
model combining continuous inputs and outputs with discrete internal
dynamics. Let u ∈ R be the input signal, y ∈ R the output signal, and
b ∈ {0, 1} a binary state variable representing the current logical mode
of the controller. The controller toggles between two output levels ymin
and ymax, depending onwhether u exceeds the upper or lower hysteresis
thresholds umax and umin, respectively.

The switching logic is typically defined by an update rule such as:

– If b(t) = 0 and u(t) > umax, then set b(t+ 1) = 1

– If b(t) = 1 and u(t) < umin, then set b(t+ 1) = 0

This introduces hysteresis into the control action and avoids chattering
caused by noise or small fluctuations around the threshold. The final
control output is then given by:

y(t) =
{
ymax if b(t) = 1
ymin if b(t) = 0

(11.6)

Such controllers are simple to implement and robust, ideal for systems
where fast, reliable switching is required. However, the discontinuities
they introduce must be treated carefully in numerical simulations.
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11 Discrete Switching

11.3 Implications

Discrete switching elements introduce discontinuities and hybrid dynamics
into power system models, which can significantly impact numerical simula-
tion and analysis. The abrupt transitions between states can cause conver-
gence issues in numerical solvers, especially when multiple switching events
occur in close succession. The non-smooth nature of switching can also com-
plicate the development of stability analysis given the fact that state space
representations would heavily depend on the operating point.
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12 Conclusion

Power systemdynamicmodels are inherently non-linear due to the fundamen-
tal physics of AC power generation and transmission, physical limitations of
equipment, and thebehavior of control systems. The non-linearities discussed,
including saturation, squared terms, trigonometric functions, empirical rela-
tionships, exponentials, hysteresis, absolute values, and the interactions involv-
ing dynamic elements represented by derivatives and transfer functions, are
critical for capturing realistic system behavior.

Accuratemodeling of these non-linearities is essential for the upcoming stabil-
ity assessment with multilinear models and computational tools. The choice
of which non-linearities to include and how accurately to model them often in-
volves a trade-off between simulation fidelity and computational feasibility, de-
pending on the specific phenomenon under investigation (e.g., transient stabil-
ity, electromagnetic transients, voltage stability, small-signal stability). Hope-
fully, this first deliverable will be a useful resource for the work that follows.
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